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Abstract 
 This paper describes a real-time 

isometric pinch force prediction algorithm using 

surface electromyogram (sEMG). The activities 

of seven muscles related to the movements of the 

thumb and index finger joints, which are 

observable using surface  electrodes, were 

recorded during pinch force experiments. For the 

successful implementation of the real-time 

prediction algorithm, an off-line analysis was 

performed using the recorded activities. From 

the seven muscles, four muscles were selected for 

monitoring using the Fisher linear discriminant 

paradigm in an off-line analysis, and the 

recordings from these four muscles provided the 

most effective information for mapping sEMG to 

the pinch force. An ANN structure was designed 

to perform efficient training and to avoid both 

under-fitting and over-fitting problems. Finally, 

the pinch force prediction algorithm was tested 

with five volunteers and the results were 

evaluated using two criteria: normalized root 

mean squared error (NRMSE) and correlation 

(CORR). The training time for the subjects was 

only 2 min 29 sec, but the prediction results were 

successful with NRMSE = 0.093 ±0.047 and 

CORR = 0.957 ±0.031. These results imply that 

the proposed algorithm is useful to measure the 

generated pinch force without force sensors. The 

possible applications of the proposed method 

include controlling bionic finger robot systems to 

overcome finger paralysis or amputation. 

 

Keywords- Biomechatronics; biorobotics; hand 

prostheses; neural interfaces; neurorobotics. 

 

I.  INTRODUCTION  
 THE dexterous manipulation skills of the 
human hand are encoded and controlled by the 

nervous system, which enables the production of 

voluntary motor actions. When humans lift and hold 

objects, the isometric grip (pinch) force, produced 

by the thumb and index finger tips, plays a decisive 

role in exerting a vertical force to oppose the 

object’s weight [1]. The amount of force is adjusted 

appropriately by tactile sensations based on the 

object’s different shapes, weights, and textures; 

excessive force may result in damage to the object, 

while too little force may result in dropping the 
object. The force that is exerted on the object 

increases or decreases according to the muscle  

 

 

 

activities, and these activities can be monitored 

using a surface electromyogram (sEMG). sEMG, 

the recording of electric muscle activities on the 

skin surface, is a method of detecting the movement 

intentions of the user for human-robot interactions 

(HRI) such as robotic prostheses [2, 3] and 

teleoperation [4, 5]. These recordings are used 

widely because the signal is noninvasively detected 

and it precedes the actual body movements [6], thus 

it is faster than kinematic and dynamic devices such 
as force sensors and motion trackers. Tenore et al. 

and Nagata et al. have demonstrated the possibilities 

of individually distinguishing the flexion and 

extension of fingers using sEMG and have 

suggested the potential of controlling the individual 

fingers of a hand robot [7, 8]. They, however, only 

distinguished two states of movement, “ON” or 

“OFF”, and did not try to extract information 

regarding force from the sEMG. When a subject 

pours water into a glass held by a robot hand 

controlled by sEMG, the glass could be dropped; 
this result from the force produced by robot to hold 

the object does not change as the weight of the held 

object increases. There have been recent studies that 

predict muscle force, but most focused on wrist or 

elbow sections [9-11], not on hand sections. 

Challenging issues exist to match sEMG with finger 

force; first, too many (thirty-nine) muscles 

contribute the force and extraction of the individual 

muscle activities using surface electrodes is difficult 

because either most extrinsic muscles are located 

deep inside the hand or most intrinsic muscles are 

too small to observe [12]. Second, the signals on the 
skin surface are mixtures of signals generated by 

many active muscles resulting from crosstalk [13]. 

Third, the central nervous system combines muscles 

into groups and a desired grip force is generated by 

an infinite number of muscular activation patterns; 

furthermore, the relation between the patterns and 

the force has not been clearly investigated [14]. 

Although there have been many studies that 

concurrently measure both finger forces and sEMG 

for motor rehabilitation or hand-related kinesiology 

studies [15, 16], the analyses were off-line and 
invasive electrodes were used. For finger force 

prediction from sEMG in HRI applications, the 

prediction model should be processed in real-time, 

and it involves two issues: 1) each subject’s 

different muscle characteristics can be reflected in 

the force prediction in a short time, and 2) the model 

needs to be computationally fast. To address these 

issues, an artificial neural network (ANN) may be 
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an appropriate model and has been implemented in 

many real-time applications due to its ability to 

approximate complex nonlinear mappings directly 

from input values [17, 18]. The ANN, inspired by 

biological neural networks, is composed of a 

number of highly interconnected artificial neurons 
activated by external stimuli and provides a model 

for a large class of natural and artificial phenomena 

that are difficult to manage using classical 

parametric techniques. The primary advantage of 

using an ANN is that it acts as a black box model, so 

it does not require detailed information, such as the 

relation between sEMG and muscle force or 

biological phenomena, of the human muscular-

skeleton system. This paper presents a real-time 

isometric pinch force prediction algorithm for the 

measurement of the generated pinch force without 

using force sensors, which are expensive and require 
a bulky frame. To record muscle activities, seven 

surface electrodes were attached to the skin near to 

the muscles located in the hand or forearm, which 

make the thumb and index finger joint movements 

and are also observable using surface electrodes. 

Among these muscles, the most effective activities 

to extract the pinch force information were 

determined based on the Fisher linear discriminant 

paradigm, and the number of electrodes was reduced 

to four. The signals from the four sEMG electrodes 

were fed into the ANN with an optimized structure 
to predict the force. 

 

II. METHODS 
A. Experimental Setup 

 The experimental setup is illustrated in Fig. 

1. The subjects were requested to sit comfortably on 

a chair with their forearm flexed (90°) via an arm 

brace, which was fixed to an optical table, and with 

their wrist fixed using a wrist brace. The subject 
grasped a force sensor and an aluminum post with 

the thumb and index finger tips set 45 mm apart in 

opposition. A Nano 17 force sensor (ATI Industrial 

Automation, USA) was used to measure the force 

produced by the fingers; the sensor has a force 

resolution of 12.5 mN. The sensor was mounted on 

an aluminum post and covered with a cotton pad to 

prevent direct contact with the subject’s skin, which 

could affect the temperature changes of the sensor 

and increase the electrical noise in the sEMG 

measurement. The activities of muscles were 

recorded and amplified 1000 times using bipolar 
noninvasive surface electrodes (DE-2.1, Delsys, 

USA) with built-in amplifiers. The electrodes were 

connected to the data acquisition board (PCI 6034e, 

National InstrumentsTM, USA), which transmitted 

the signals to a computer at 1000 Hz. To verify that 

the experiment was performed under isometric 

conditions, an optical motion tracking system, 

Micron Tracker S60 (Claron Technology Inc., 

Canada), was used. Two markers were placed on the 

thumb at the distal and proximal interphalangeal 

joints and three markers were placed on the index 

finger at the metacarpophalangeal joint and the 

distal and proximal interphalangeal joints. On a 

monitor in front of the subject, three force levels 

were displayed as simple bars that represented the i) 

predrawn target force levels, ii) measured force 
levels, and iii) predicted force levels.  

B. Signal Processing 

 It is well known that an EMG can be 

modeled as a zero mean Gaussian process [19]. 

Thus, the following equation was used to estimate 

the signal variance for feature extraction and 

function of variance is analogous to a moving 

average (MA) filter excluding the square term and 

denominator. Like a moving average filter, the cut-

off frequency, fc, of the low-pass filter was defined 

in relation to the moving average filter. This 

equation describes that the effectiveness of the low-
pass filter increases with a larger window because 

the cutoff frequency decreases; thus, high frequency 

noises are effectively reduced. In contrast, the large 

window introduces a significant time delay and this 

delay can become an obstacle for a natural real-time 

HRI. Hence, there is a tradeoff between the real-

time signal process and the accuracy of the pattern 

recognition. Considering these aspects of the 

measurement, the length of the analysis window was 

empirically determined to be 200 ms. 

C. Myoelectricsite selection 
 There are 15 muscles that control the 

thumb and index  finger, but only half of their 

activities are observable via sEMG. A software 

package, ADAM Interactive Anatomy (A.D.A.M. 

Inc., USA), was used to find which of these muscles 

are located in the outermost layer among the 

muscles in the forearm and the hand. From the 

software, it was assumed that seven muscle 

activities could be observed: Extensor Digitorium 

(ED), Abductor Pollicis Longus (APL), Flexor 

Digitorum Superficialis (FDS), Dorsal Interosseous 

(DI), Abductor Pollicis Brevis (APB), Flexor 
Pollicis Brevis (FPB), and Adductor Pollicis (AP). 

To obtain the seven target muscles’ activities, seven 

electrodes were attached to a volunteer’s forearm 

and hand, and channels 1 to 7 were targeted to 

obtain the activities of the ED, APL, FDS DI, APB, 

FPB, and AP muscles, respectively as shown in Fig. 

2. The pinch task with static and dynamic force 

guidance was performed five times while recording 

the sEMG and force data as shown in Fig. 3. 

However, the activity of the FPB could not be 

observed because the electrode was too wide to 
detect its activities, most parts of which were 

covered by the APB; the channel 6 signal was 

recorded from the APB, which lies primarily in the 

outer layer of the palm. Even though the signals in 

channels 5 and 6 were recorded from the same 

muscle, each signal represents different activities. 

This is because each whole muscle is innervated by 
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a number of motor units and the units’ functional 

characteristics differ depending on the specific 

functions, such as the contraction velocity and 

twitch force [20]. It was expected that all signals 

would not be helpful in extracting the force 

information; for instance, Fig. 3 shows that the 
signal from channel 1 seems to be independent on 

the measured force over time. To determine which 

channel is relatively effective in extracting the force 

information, the Fisher linear discriminant paradigm 

was employed [21]. This paradigm has been used 

widely in face recognition research [22, 23] and 

provides the criterion function: 

 The denominator represents the amount of 

variance in the samples of both classes, and the 

smaller the variance, the better the samples can be 

identified into each class. Therefore, when Jk is 

high, the signals at the kth channel provide effective 
information for successful classification. Our 

research goal was not to classify the two classes of 

sEMG, but to choose more discriminable channels: 

class 1 of the signals when the force was low (0 N) 

and class 2 of the signals when the force was high (8 

N). Because the sEMG has a proportional relation to 

muscle force, if the signals at a certain channel 

provide the most discriminable information between 

the high and low forces, they could also represent a 

middle range of force better than the signals in the 

other channels. Using five test data sets, the 
discriminabilities were evaluated as shown in Fig. 4; 

it was concluded that the signals in channels 4 to 7 

provided proper information to match the sEMG to 

the pinch force. Therefore, the signals from the 

channel 4 to 7 were only fed into ANN to predict the 

force. 

 

D. Artificial Neural Network 

 As mentioned earlier, an ANN provides a 

black box model for a large class of natural and 

artificial phenomena that are difficult to manage 

using classical parametric techniques. In order to 
design the network, a set of signals flow through the 

network; then, the network adjusts its internal 

structure until it reaches a stable state in which the 

outputs are considered satisfactory. After successful 

training, the network is preserved, receives unseen 

input values, and processes the data to produce 

appropriate outputs. The performance depends on 

various factors, the most important of which is to 

determine the network structure with the degree of 

freedom or information that is inherent in the 

training data. The structure may contain several 
hidden layers, however one hidden layer is 

sufficient to guarantee convergence in the training 

according to the Universal Approximation Theorem 

[24]. In contrast to the number of hidden layers, the 

theorem does not specify the number of hidden 

neurons, so it must be determined by trial and error. 

The number should be considered according to the 

degree of nonlinearities between the input and 

output samples; however, it is difficult to define the 

nonlinearities between the sEMG and the muscle 

forces. A choice of the optimal number of neurons is 

important and results in significant effects on the 

network performance. From a computational 

viewpoint, the network demands the fewest hidden 
neurons to reduce the number of interconnections, 

whose weights should be updated during training. 

Furthermore, an excessive number of hidden 

neurons can generate over-fitting problems in which 

the network loses its generalization abilities. 

Conversely, a network with too few neurons, with 

respect to the complexity of the problem, might not 

be able to effectively learn the training data. 

Therefore, the use of an optimal number of hidden 

neurons is highly desirable for efficient training. To 

determine the optimal number of hidden neurons, an 

off-line ANN simulation was performed using five 
test data sets; one set was used for training and the 

other sets were used for testing. ANN performances 

with many neurons (1 – 40) were evaluated, and the 

tests were performed with each number of neurons 

10 times. The performance was evaluated using two 

criteria: normalized root mean squared error 

(NRMSE) and correlation (CORR). x1, x2, and N 

indicate the force measured by the sensor, the 

predicted force from the ANN, and the total number 

of data, respectively; subscript i indicates the ith 

data. Ten hidden neurons are sufficient to satisfy the 
tradeoff between computational efficiency and 

sufficient training. During the training stage, all 

subjects were instructed to produce pinch forces 

following the bars displayed in static and dynamic 

levels: the force and sEMG were recorded 

concurrently. Next, the sEMGs were filtered and the 

network was trained using the filtered samples. 

Network tuning was performed using a 

backpropagation algorithm (learning rate = 0.8) with 

a momentum approach (momentum rate = 0.3) [24]. 

 

E. Tasks and Procedures 
 Five male subjects, aged 26.4 years (SD 

2.3), volunteered in the experiments. All participants 

reported no history of upper extremity or other 

musculoskeletal complaints. The subjects were 

required to exert pinch forces with their right hand 

under the isometric conditions. They were asked to 

fully relax their forearm muscles, to avoid exerting 

any other forces except the pinch force, and to hold 

the pinch pose. Prior to the experiments, all subjects 

were instructed on how to produce the pinch force, 

and the positions of the corresponding muscles 
(which were selected in the myoelectricsite 

selection) were detected through palpation. The best 

sites for clear detection of the muscle contractions 

were then found while slightly moving the 

electrode. Next, the four electrodes were attached to 

the best site on the skin using adhesive tape. The 

experiments consisted of two parts: a training part to 

train the ANN and a test part for verification. Each 



 Akash K Singh / International Journal of Engineering Research and Applications (IJERA) 

ISSN: 2248-9622   www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.253-281 

256 | P a g e  

 

part was performed with ten trials. In the training 

part, the subjects were requested to exert the target 

force levels, which were displayed on the monitor, 

for 85 seconds. The levels were composed of static 

(2, 4, 6, 8 N) and dynamic levels by generating a 

sinusoidal function. In the test part, there are two 
sessions: the first session verified whether the ANN 

training was successfully completed and the second 

session checked whether the ANN had 

generalization properties using unpredicted input. In 

the first session, the subjects were instructed to exert 

force using the same protocols as the training part 

with the force guidance, in which the predicted force 

was not displayed to prevent the estimated force 

adapting to the measured force. In the second 

session, the subjects were asked to produce 

voluntarily forces for 60 seconds. 

 We consider the following anycast field 
equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]
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( , ), 0,1 ,
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
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


   
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

  

 We give an interpretation of the various 

parameters and functions that appear in (1),   is 
finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 
1

( ) (2)
1 z

S z
e




  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note 

V  the p   dimensional vector 1( ,..., ).pV V The 

p  function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine 

the speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed 
to be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

F. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 
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[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we 

write (1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


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

 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the 

papers on this subject assume   infinite, hence 

requiring .m      

 

 
Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

G. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2
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1
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2

def
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We note 1,...min i p il l   

 
2
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Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  
 

Let us show that the open route of F  of center 0 

and radius , ,RR B  is stable under the dynamics of 

equation. We know that ( )V t  is defined for all 

0t s  and that 0f   on ,RB  the boundary of 

RB . We consider three cases for the initial 

condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity 

of   shows that  
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Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E
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and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

  

 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K   

  
By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    


  

Where X  is the set of all points in the support of 

  whose distance from the complement of K  

does not  . (Thus  X contains no point which is 

“far within” K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) 

holds simply because A  has compact support. To 

compute (10), express A  in polar coordinates, and 

note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
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' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall 

do this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 
  

For all z G  , we have now proved (3), (4), and 

(5) The definition of X  shows that X is compact 

and that X  can be covered by finitely many open 

discs 1,..., ,nD D  of radius 2 ,  whose centers are 

not in .K  Since 
2S K  is connected, the center of 

each jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 

2 ,  so that 
2

jS E  is connected and so that 

.jK E     with 2r  . There are functions 

2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 
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( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, 

as 0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

 

For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and 

(4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 
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THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in 

it is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form 

an ideal 
'a  in A ,  and since A  is Noetherian, 

'a

will be finitely generated. Let 1,..., mg g  be 

elements of a  whose leading coefficients generate 
'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 

One of the great successes of category theory in 

computer science has been the development of a 

“unified theory” of the constructions underlying 

denotational semantics. In the untyped  -calculus,  

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is ,d D  Also, the 

interpretation of a functional abstraction like x . x  
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is most conveniently defined as a function from 

Dto D  , which must then be regarded as an 

element of D. Let  : D D D    be the 

function that picks out elements of D to  represent 

elements of  D D  and  : D D D    

be the function that maps elements of D to functions 

of D.  Since ( )f  is intended to represent the 

function f  as an element of D, it makes sense to 

require that ( ( )) ,f f    that is, 

 D D
o id 


   Furthermore, we often want to 

view every element of D as representing some 

function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. These 

conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the 

interpretations of functional abstractions: 

 D D D   .Let us suppose we are working 

with the untyped calculus  , we need a solution 

ot the equation  ,D A D D    where A is 

some predetermined domain containing 

interpretations for elements of C.  Each element of 

D corresponds to either an element of A or an 

element of  ,D D  with a tag. This equation 

can be solved by finding least fixed points of the 

function  ( )F X A X X    from domains to 

domains --- that is, finding domains X  such that 

 ,X A X X    and such that for any 

domain Y also satisfying this equation, there is an 

embedding of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 
a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    

for all 0i  . We sometimes write : X   as 

a reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object 

X and a collection of K-arrows  : | 0i iD i   

such that for all 10, i i ii f o    . An  
op -

limit of an 
op chain     is a cone : X   

with the property that if 
': X  is also a cone, 

then there exists a unique mediating arrow 
':k X X  such that for all 0, i ii o k    . 

We write k  (or just  ) for the distinguish initial 

object of K, when it has one, and A  for the 

unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to 

denote all of   except oD  and 0f . By analogy, 

 
 is  | 1i i  . For the images of   and   

under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     
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We write 
iF  for the i-fold iterated composition of F – 

that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f    

,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least fixed 

point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 
 

Theorem 1.4 Let a DAG G given in which each 

node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields 

a joint probability distribution P of the variables, 

and (G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it 

follows that ( ) ( )k

m mQ Q  for all k relatively 

prime to m . In particular, the images of the i

coincide, so   / ( ( ))mQ x x is Galois over Q . 

This means that we can write ( )mQ  for 

  / ( ( ))mQ x x without much fear of ambiguity; 

we will do so from now on, the identification being 

.m x  One advantage of this is that one can 

easily talk about cyclotomic fields being extensions 

of one another,or intersections or compositums; all 

of these things take place considering them as 

subfield of .C  We now investigate some basic 

properties of cyclotomic fields. The first issue is 
whether or not they are all distinct; to determine 

this, we need to know which roots of unity lie in 

( )mQ  .Note, for example, that if m is odd, then 

m is a 2
thm root of unity. We will show that this 
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is the only way in which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In 

a very noisy channel, the output iy and input ix

would be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 
channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 
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( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  is 

usually called the equivocation. In a sense, the 
equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an 

output symbol jy provides ( ) ( )XH X H
Y

  bits 

of information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. 

Thus, the information transferred through the 

channel is the difference between the output entropy 

and the noise entropy. Alternatively, it can be said 

that the channel mutual information is the difference 

between the number of bits needed for determining 
a given input symbol before knowing the 

corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 
Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the 

factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 
 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 
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3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F       

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 

 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

H. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums 

i i
a b  with ia a  and ib b , and if 

1( ,..., )ma a a  and 1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  

and the ideals of A  containing a An ideal p  if 

prime if p A  and ab p a p    or b p . 

Thus p  is prime if and only if /A p  is nonzero 

and has the property that  

0, 0 0,ab b a      i.e., /A p is an 

integral domain. An ideal m  is maximal if |m A  

and there does not exist an ideal n  contained 

strictly between m and A . Thus m is maximal if 

and only if /A m  has no proper nonzero ideals, and 

so is a field. Note that m  maximal   m prime. 

The ideals of A B  are all of the form a b , with 

a  and b  ideals in A  and B . To see this, note that 
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if c  is an ideal in  A B  and ( , )a b c , then 

( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  

together with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding 

whether ( )f g , namely, find r and check 

whether it is zero. Moreover, the Euclidean 

algorithm allows to pass from finite set of 

generators for an ideal in  k X to a single 

generator by successively replacing each pair of 

generators with their greatest common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. 

For example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 
order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z   
  

as 
3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    

  
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

a A
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 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, the 

leading monomial is 
2XY Z , and the leading term is  

24XY Z . The division algorithm in  1,... nk X X . 

Fix a monomial ordering in 
2 . Suppose given a 

polynomial f  and an ordered set 1( ,... )sg g  of 

polynomials; the division algorithm then constructs 

polynomials 1,... sa a  and r   such that 

1 1 ... s sf a g a g r      Where either 0r   or no 

monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 1( ) | ( )LT g LT f , 

divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 

1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  
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[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 
a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the “property” G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the 

intersection. There are 
[ ] / ( !)rj rn j r  such 

intersections. For the other case, some two distinct 

properties name some element in common, so no 

permutation can have both these properties, and the 
r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  

properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  
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where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution 

one shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  
   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived 

from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from 

some 
' 0,g   since, under these circumstances, 

both 
 

1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to 

zero as .n   In particular, for polynomials and 

square free polynomials, the relative error in this 

asymptotic approximation is of order 
1n

 if 
' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 
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0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not,    10.8
n

 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   

to hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in  7.7
( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 
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difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n   

for any 0  , to replace 
 7.7

( , ).n b  This would 

be of the ideal order ( / )O b n for large enough ,b  

but would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  

 

[ /2]

0
0

0 00 0

0

[ /2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

P





 

 



 



   
   

  

      

   

 

 

 



  

We have   

     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 





 
       

 

  
   

 

   


    









 

 

  



0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  
 

The approximation in (1.2) is further simplified by 

noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n



 

  
  

 
 

 

0

0

( )(1 )
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1
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s

s r
P T s

n



 

  
  

 
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[ /2]

0 0
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1 2 2

0 0 0
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1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b
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n

n E T T n n ET



 

 

 

 
  



    

 

 

 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b
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n

n ET P T n E T T n
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





 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus find 

tha



 Akash K Singh / International Journal of Engineering Research and Applications (IJERA) 

ISSN: 2248-9622   www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.253-281 

273 | P a g e  

 

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )
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3
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[0,1]
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n ET
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
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

 
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



  







 
      

 



 

  
    

  

 

 

 

The quantity 
 7.8

( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S     this supplementary 

condition can be removed if 
 10.8

( )n
 is replaced 

by 
 10.11

( )n
   in the definition of 

 7.8
( , )n b , has 

the required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a 

direct calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

“standard origin”.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An “abstract” affine space is a pair of sets , the set 

of points and the set of vectors so that the operations 
as above are defined axiomatically). Notice that 

vectors in an affine space are also known as “free 

vectors”. Intuitively, they are not fixed at points and 

“float freely” in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space   
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

“smooth (or differentiable) manifolds”. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few 

words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 
consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as “lengths”, “angles” or “areas” and 

“volumes”. To be able to do so, we have to 

introduce some more definitions, making 
n a 

Euclidean space. Namely, we define the length of a 

vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B 

to A (symmetry); also, for three points, A, B and C, 

we have ( , ) ( , ) ( , )d A B d A C d C B   (the 

“triangle inequality”). To define angles, we first 

introduce the scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the “dot product” . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from 

the inequality 
2 22( , ) (5)a b a b   
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known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  
 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 
usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  instead of  . The only difference is that now 

the differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    
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( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h      

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       
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i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written 

as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by the 

map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU  

. Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 
1( ..., )ny y  are the “new” 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 

0r  ). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from 

that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not “constant” but depends on point. Vectors 

“stuck to points” when we consider curvilinear 

coordinates. 
 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
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1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let ( ).pK    

We write   for p  or this section. Recall that K  

has degree ( ) 1p p    over .  We wish to 

show that  .KO    Note that   is a root of 

1,px   and thus is an algebraic integer; since K  

is a ring we have that   .KO   We give a 

proof without assuming unique factorization of 

ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
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Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 
 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have 

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1
j  

is a multiple of 1   in KO  for every 0.j   

Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next 

consider the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 

( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form ,

n

K pp O  for some ;n  it follows immediately 
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that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let 

K   be a root of a polynomial with coefficients 

in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

III. EXPERIMENTAL RESULTS AND 

DISCUSSION  
 The sEMG from the four electrodes were 

used as inputs in the optimized ANN, and the forces 

from the force sensor were used as references. One 

of the experimental results of both session 1 and 

session 2; the gray line indicates the measured force 

from the sensor and the black line indicates the force 

predicted by the ANN. To validate the prediction 

method, the predicted data were evaluated against 
the measured data using two criteria: NRMSE and 

CORR. In session 1, as mentioned earlier, the 

subjects were required to exert target force levels for 

85 seconds. Since these profiles had the same 

tendency as the profiles during the ANN training, 

the good performance (NRMSE = 0.093 ±0.047 and 

CORR = 0.957 ±0.031) for all subjects was 

validated. In session 2, the subjects could produce 

any force, so the forces had a tendency that the 

ANN could not expect. It is interesting that the 

results of session 2 (NRMSE = 0.112 ±0.082 and 

CORR = 0.932 ±0.058) were comparable with those 
of session 1 as a result of the ANN’s generalization 

abilities. Prior the experiments, the sEMG samples 

were collected to train the ANN, where 

approximately 85 seconds were required, and then 

the training was performed with a limited number of 

iterations (= 100), where approximately only 64 

seconds were required in a computer running on a 

Pentium 4, 2.93 GHz processor. The total time for 

the sample collection and ANN training was fast (2 

min 29 sec). It was believed that the reduction of the 

number of inputs (electrodes) reduced the training 
time because the excluded channels provided less 

productive information in predicting the force. 

Without the exclusions, the number of weights in 

the network would have increased as the number of 

input neurons increased; also, it is difficult to tune 

the weights using less productive information. It is 

well known that individuals have anatomical 

variations in their muscles [12] and the sEMG 

depends significantly on the individual skin and 

muscle properties. In addition, the positioning the 

electrodes differently would produce different 

recordings, even for observations of the same 
muscle [26]. Therefore, a user specific ANN model 

is required, and also whenever a user wants to use 

the force prediction model from sEMG, the training 

step is necessary prior to use. The short training 

time implies that this model is practical and the user 

is able to use it without time consuming work. 

These experiments were performed by measuring 

the pinch forces produced by the thumb and index 

finger tips that were set 45 mm apart in opposition, 

and the experimental result shows that the pinch 

forces were well predictable from the sEMG. 
However, if two fingers, more or less than 45 mm 
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apart in opposition, produce the forces, the designed 

model is not guaranteed to provide accurate 

predictions. The muscle forces are dependent on the 

muscle lengths [20], and if the distance of the two 

fingers changes, the brain would control the muscles 

in a different way. 
 

IV. CONCLUSION  
 The main objective of this paper is to 

present an algorithm for real-time pinch force 

prediction and the evaluation results of the five 

volunteer subjects. Considering the experimental  

results, the designed ANN with an optimized 

structure successfully predicted the pinch force from 

four sEMG electrodes. In addition, the training time 

was short, which implies that the proposed method 

is practical for the measurement of the generated 

pinch force without force sensors. A possible 

application of the pinch force prediction method 
could be in controlling several platforms, such as 

bionic finger robot systems for finger paralysis or 

amputation (i.e. involving exoskeletons and finger 

prostheses), and teleoperated robotic systems that 

can perform human tasks in hazardous 

environments. The above discussion has important 

implications for future work on improving the pinch 

force prediction from sEMG with regards to the 

distances between the thumb and index finger tips. 

For this purpose, we are developing a motorized 

pinch force measurement device and will undertake 

an extended study under dynamic kinematic 
conditions. Another possible extension of this study 

is the prediction of five finger forces using sEMG 

with the aim of controlling fingers of a robotic hand 

with the appropriate forces. 
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